
Pitch Detector User Guide
document version 1.0

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !1

Introduction
This pitch detector algorithm is based on C implementation of RAPT (i.e. Robust
Algorithm for Pitch Tracking) distributed as part of the ESPS toolkit downloaded from
http://www.speech.kth.se/speech/esps/esps.zip (there are other copies available in
GitHub). The algorithm is ported to C#.

 RAPT Pitch Tracking algorithm is described in paper A Robust Algorithm for Pitch
Tracking by David Talkin 1995. A scanned copy of the paper is available in https://
www.ee.columbia.edu/~dpwe/papers/Talkin95-rapt.pdf.

 
 

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !2

http://www.speech.kth.se/speech/esps/esps.zip
https://www.ee.columbia.edu/~dpwe/papers/Talkin95-rapt.pdf
https://www.ee.columbia.edu/~dpwe/papers/Talkin95-rapt.pdf

Getting Started
1. Drag MicrophonePitchDetector prefab into your scene.
2. Write a callback method that uses the pitch values. The method should have thee

arguments:
• a list of pitch values in Hz (List<float>),
• the number of audio samples from which the pitch values were analyzed (int),

and
• the volume in full scale decibels (float).

For example:
 // Print pitch values to console 
 public void LogPitch (List<float> pitchList, int samples, float db) { 
 var midis = RAPTPitchDetectorExtensions.HerzToMidi (pitchList); 
 Debug.Log ("detected " + pitchList.Count + " values from " + samples
 + " samples, db:" + db); 
 Debug.Log (midis.NoteString ()); 
 }  

3. Configure MicrophonePitchDetector.onPitchDetected in editor:

OR

Add callback method via code. For example:

public MicrophonePitchDetector detector; 
…
detector.onPitchDetected.AddListener (LogPitch);

 

4. Set MicrophonePitchDetector.Record to true for starting microphone
input and receiving onPitchDetected events.

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !3

Example Scene
Pitch Detector asset contains ExampleScene. The scene has a record button at
the top-right corner. The button is used for starting and stopping the default
microphone of the device. When the microphone is on, the callback
MicrophoneDemo.DrawPitch gets the pitch values and draws them on the
screen. 

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !4

Parameters

MicrophonePitchDetector.micSampleRate: Microphone sample rate.
default: 16000
MicrophonePitchDetector.interval: Interval (in sec) at which the
microphone input is sent to the pitch detector algorithm. The interval should not be
too short since the algorithm calculates pitch in Params.frame_step frames (see below).
default: 0.07

Params.frame_step: Size (in sec) of one analysis frame. default: 0.015
Params.minF0: Minimum pitch (in Hz) to search for. default: 50
Params.maxF0: Maximum pitch (in Hz) to search for. default: 800

The algorithm has many other parameters that are defined in Params class. Asset
author has not conducted extensive research on parameters and most parameter
values are derived straight from the C implementation.

Results

Analyzed pitch is received via event that has three arguments:
 
public class PitchEvent : UnityEvent<List<float>, int, float> {}

The first argument is a list of pitch values in Hz. If the list is empty, the algorithm
failed to find suitable pitch value. The pitch values in the list are ordered by time from
the oldest to the newest.
The second argument is the number of samples that detection was based on. (Note
that this is the number of audio samples that were given as input to the algorithm, not
the number of pitch values that were given as output of the algorithm.)
The third argument is full scale decibels where value 0 denotes maximum voice level.
The voice level is calculated from the same samples as the pitch values.

Depending on the use case, the asset user might apply additional smoothing to the
results. The third argument (i.e. the voice level) can be used to filter out low voices.

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !5

Performance Considerations
The algorithm works in time domain and the cost of computation grows with sample
rate. Thus, reducing the sample rate of the input signal is the best way to reduce the
CPU load of the pitch detector.

Additional speedup can be achieved by using pointers in array operations. In order to
enable pointer operations:
1. define UNSAFE_OPTMISED. You can do this though Scripting Define Symbols text

box in Player settings:

2. Add ’-unsafe’ switch into mcs.rsp file. The mcs.rsp file is located in project
Assets folder. If the folder does not contain mcs.rsp file, you can create an empty
text file named mcs.rsp and add ’-unsafe’ text there.

If the Pitch Detector algorithm blocks the Unity main thread for too long time in your
use case, you can use the algorithm in background thread (e.g.
System.Threading.Thread or BackgroundWorker). In that case, every thread
should have its own instance of RAPTPitchDetector object.  

 

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !6

Programming
This pitch detector algorithm is based on code that is ported from C to C#. The
C implementation was downloaded from http://www.speech.kth.se/speech/
esps/esps.zip. The important C source files are get_f0.c, dp_f0.c,
get_cands.c and sigproc.c.

C# implementation is mainly in file RAPTPitchDetector.cs. Best effort has
been made in refactoring the C implementation to more readable form but the
code of RAPTPitchDetector.cs is still pretty complex and C heritage is
visible.

If source code modifications are needed, unit tests can be utilised for checking if
something has gone wrong in modifications. The pitch detector asset contains
unit tests in EditorScripts/PitchTrackerTest.cs. Before testing, the file
PitchTrackerTest.cs must be copied to Editor folder of the Unity project.
After that, the unit tests can be run via menu Window/Test Runner. The
most important test cases are
• PitchTrackerTestFrequnecySweep that tests algorithm with 50-700Hz

sine wave,
• PitchTrackerTestClips that analyses three audio clips in TestData folder,
• PitchTrackerTestStreaming that does same as PitchTrackerTestClips but

in smaller chunks.
Audio clips for the unit tests are loaded from path:
Path.Combine (Application.dataPath, "HumanVoicePitchDetector/

TestData/")  

PITCH DETECTOR USER GUIDE OUTLOUD OY 2018 !7

http://www.speech.kth.se/speech/esps/esps.zip
http://www.speech.kth.se/speech/esps/esps.zip

